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ABSTRACT

in this papar the non-symmatris, free, elastic vibrations of thin domes
of revojution are studied, It is essumed that tha frequency is low, The
asymptotic approximations previously given Dy the writer are used to estimate
the general solution to the shell vibration equiations at low frequencies,
Approximations for the low natural frequencies and moces are derived systemar-
ically under a variety of edge conditions. Low natural frequencies are found
only when the edgs conditions impose no forces tangent to the. shall surface.
dnen the 2dge is free (and only then} Rayleigh's inextensional frequencies
are recovered. For tartain cther edge conditions rew naturai frequencies are
found that are abuve Reyleigh's frequencies but still low compared <.r. with
the lowest meubrane frequency. The displacement modes associated with these .
new frequencies are mastly of inextensional type. The gesneral resuylts are

apoliad ro estimate thess now frequencies for spherical domes. N
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1. INTRODUCTION

1he inextensional vitrations of thin shells were first studied
by Rayleigh [1}!, 2nd since that time his procedure has often been
used to estimate natural frequencies fer sarious shell shapes, The
frequencies obtained by thisz procedure are much lower {(for a thirn
shell) than those predicted by any cther sethcd and are therefore of
great practical interest in such applications as tents, parachutes,
and metai or plastic containers.

Mowever, there are pood reascns for skepticism conceruisg the
generality of Rayleign's procedure. TFor oxemple, Love [2] has shown
trit tne modes satisfy neither the mation equations nor {(with a faw
sxceptions) the edge conditions., Aiso, Ammoid and Warburtor {3
ooservad that Raylaigh’s prosedure gave good agreement with exparimants
in some cases, bt that changes in the edge conditions .ould cause enor-
mous changes in the lowast asasured frequercies and coxpletely dastroy
the agreemen, It appears, therefore, that we do not understand these
vitrations as well as xe ought to.

In the prezent paper we shall show how inextensional modss may be
systematically derived from a ganeral theory of shell vibration, without
expijcitly assuming that the mode is inextensionai. Esther, it is merely
assumed that the frequency is low { in a sense thit will later de made
more precise), and from this assumption inextensiocnal mscdes and fre-

queucies are derived., This change of procedure is important for two

iNumbers in brackets designate References at end of paper.
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reasons. TFirst, we find that inextensionas wmodés cay Le derived only
fur certain edge conditions, and this sheds light on the juestions
raised in {2] and (3], Seccud, tie new procedure leaves the wiy open
te find al} low frequencies, whereas Rayleigh's procedure is limited
vy frequancies for which tie modal bending snervy greatly exceeds the
medal stretching enevpy. TFor certain edge conditions, we shall find
inextensional modes with frequenclies different from thnse obtained %y
Jayleigh,

To demonstrate the procedure in a context general enoush to ha
convincing but simple enough to avoid unessential manlpulaticns, we
consider a general dome of revolution axecutiag small, non-symmetric
vibrations. We shall use the approximations obtainsd by the authnr [u4]
1¢ write down an approximate general solution cf the differential egua-
tion system when the Frequency is low, This solution is sybstitited
into the boundary conditioas, the resultiang frequency determinant is
solved and the ratios of the arbitrary constants are found, This en-
tire process is carried through for four different adge conditions,
starting w.th a free edga and groceeding at eacn stage to the "freest”
of the remaining ~dge conditions, The freaquency increases with each
nes edge condition until we exhaust all edge conditions for which low
frequencies can be found,

for the two “freest" edpe conditions this procedure gives com-
plete estimates of the mode but only arn order-cf-magnitude estimate of
tre freguency. 7o find frequency estimates ws use Rayleigh-s Princinle

for these cases. In the othexr two cases explicit estimates are foun




H
A
3
EX
R
‘z
- &
§:

wgzerry
i

AT

for the inextensional frequencies. The general formulas are applied
to 3 spherical dome, and numerical results are obtained for the pre-

viously unknown inextensional frequencies.

2. FUNDAMENTAL EQUATIONS AND SCLUTIONS

We shall adopt as owr starting point the equations of thin-shell
theory propounded by Sanders [5] and modified by the inclusion of
translational {but not rotatioral) inertia. All effects of transverse
shear and thickness change are omitted in this theory. Ve may write

the system in c¢imensionless form as in [4].

Yo = U MR T, Yoo = Uf + VM wra"
fsg 2 1/2{v* = uM « vf)
2 ~w” =1 -
bs w’ +ur, !, b3 2 VT, LR
Kes * Dg“s  Kgg * Py + M
= p~ o - hal¥ | - -1 P H »
ksa 172 {5 Mb, fbe + l/2(r8 v, M v ¢ vf e uMd}
fes © Yss * VTgs v Top ~ Yoo T VVas
nsa = (1 - v)yse
Pas T Kgy * g v Tap T Fep T as
a = (1 -v)k
sg £ 1

q, T Bt f(nss - mea) + Mmg,

G = ws + )fm’e - nn“

(13

{2)

{3

(u}

{5)

(6)
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The motion equations are
(L -v2) gy * ¢ £, - ngg) « 0 ] ¢ 220
+ ef{qr.Tt ¢ Vg (r T - r TH)} =0 (1)
Q- v")“(nme‘ v 2fn” - m“} + g2v
* e {qyryTt ¢ 1/20r,TE - e TN YL = 0 (8)
(1 = v2) H{ngery ! + nﬁers‘l} - 2w - e¥ig," 1 fg_ ¢ qul =0 (9)
Here in dimensionless form u, v, and w are the meridional,circun‘erential,
and nomal displacements, Yss* Yoo and Yoo ¥ the middle surfzece strains,

bs and be the rotations and k k__ and kse the curvatur2 chanses, The

ss® a6
n's, m's, and q’s are the direct (membrane) stresses, >endin; romenis, and
shears, respectively., Also rg and re are the principal radii of corvature,
v is Poisson's ravio and
Q= ..;R(o/ll)'/2
€/ = h¥[12R4(1 - v¥)] << 1 (13)

f(g) = v} cot o, Mlo) = mry™ esc ¢

8
where o is the frequency, p the mass density, E Young's modulus, h shell
thickness (assumed constant), R & length characteristic of the radii of
curvature, m the circumferential wave number and ¢ the angle bertwsen the
noreal to the shell and the axial direction. Primes denote differentiziion
with respect to o , which is dimersionless arc lenzth aleng @ mer! dian

The boundary conditions at an edpe have basen given by Sanders f5}

and consist of prescribing

Pgz or u
Ns“ o Vv
{11)
Qs Gr W
a or D
ss
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where
2 - yl -1 . -1
Nss 3ngtc 1/72(1 - v )(3:-o r, ) "o
Qg = g4 ¢ ""6 (12)
D =ws =z -bg+ur-?
The principle of conservation of anergy for the vibrating shell

states that

Egx - Eg-Ey =0

where

[y
X
"

a2f(u? ¢ v4 + w?) r sin 4do = Q2K

™
"

s = (1 - v M lnggveg + nyavgg * 20ggvg,) Ty Sing do (13)

[y
w
[

= ¢f(mo kg + Bye¥es * hsok“) ng sing do
and the integrals are extended over a meridian.

We shall now describe the approximations that we shall use for
the solutions of this system. The system is linear, of eighth order
and has singularities where sin ¢ = 0.2 We limit ourselves to tne
case where

e << 1.
four of the eight solutions vary rapidly with o (i.e. along a meridian)
and are called bending sclutions, and four vary xuch more slowly and
are cal'ed mesbrane solutioﬁs. The approximations for the bendi=g
sclutions are quits differant {rom the approximztions for the membrane
solutions. Two solutions of euch type are singular where sin ¢ = O,
We shzll now list the approximations to the four bending solu-

tions, first near sin ¢ =2 0, then for sin ¢ # 0. The latter are

2 4e sssume that sin ¢ = O at, and only at, the axis, and that the
apex of the dome is of second degree.

S




linear combinations of the approximations obtained in (4] for the cass
QX‘_, < lo
For sin ¢ = O:
we A,berh(x) . Azbcim(x) + Agker (x) ¢ A kei (x) (1)
x = (1 -22)% 2y , WL (15)

For sine¢ # O:

 w ] 1
Bag | * H G, {A eVc(a) ~ Azeys(a) + Aale-yc(a*) - A me"Ts{a®)}
b M
L 9
a7 [ -¢]
u
St s pT4 n {A‘evs(a*) - Aze'c(a*) & Aate Ys{a) + A“ﬂe'yc(a))
MG
s9 n (18)
L)
(3s ] e
..a e ’—-1 -1 . »
S [= A {AjeVc(a®*) + AjeTsiat) - A ve ‘cla) +
m__ {1 - v)M
| 3% - - + A,‘we“’l(a))
~ ~ . —1
v ] -\,
mss 2 -1 Y ¥ - .
= A°H {-AeVs(a) + A e c(a) ¢ Ayve Ys(a®) ¢
LI -v
ﬁﬁaie'yc(a*))
qo L;“ -
where the A's are arbitrarv cobstants and
6’z0 /
Xz AS (p "2 - Q2)/% go° (17)
t”=0 8
v Ean/do = Mr 2 - al)t/s > (18}
Ho: ol - 8¢)e)t’e (2wresino)"’z(r o a2y~
vz 27V azy-(x/8)+(1/2)mx , a* = a+ (1/8)n
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cla) zcos a, s(a) = sin a

c{a®) =z cos a* s(a®) z sin a®

(113

e - S 2 (1 -v¥)r "}
Gu Ty vr, . ’n vilr,

G
v

(11}

(2 + v)re" -r "
In deriving these formulas we have assured that o is measured from
the apex of the dome., Also, R is chosen as the commcn value of the
principsl radii of curvature at the szpex. Then r (D)3 re(o) z ] and
the definition of x for =in ¢ =0 is a continuation of that for sin ¢ # 0.
These approximate formuiss were cbtained by an asymptotic analysis
of the fundawental system of equations, Tha anaiysis indicates, and
we shall assume hencaforth, that the errors in thase approxismations
are all 0(1"1). For example, we could write
w = A Hele(a) (1 + x-‘nw
n 3200 j=1,2, ...

iy, .Azl'lt’s(a) (1 ﬂ"nu(z)] teue

and sixilarly for all the other variables., General expressions for the
carrections are not known, nor do ws know aven the leading temms in
their expansions in A~! although thess could presumal.y be found.
Fcr the sake of brevity we shall refrain from indicazing thase corre~tion
teras in sur equations, upon the understanding thbat they are gsnerally
0{2"!). However, thare are several, rather important, eguations in which
the leading terms cancel, and in those we shail write dowm symbols ror
the correction terss evan though we don't know them.

In general we assuse that terms which are 0(A”!) are negligible com-
pared vith those that are 0{1). This givez us & ravionszie for deciding

vhen these bending solutions are approximately atatiic, for, expanding

~d




all tone approximations in powers of Q’, we sés that the static asymptotic
approzimationz are obtained when

@2 <o G,

The approximations we shail use for the meabrane solutions are those

described in {4). At this point we assume that

2 <o b,
Then the membrape solutions separate int> 2wo groups. Two (labelled
5 and ®) are approximately the static membrane sclutions. Two (labelled
7 and 8) are (for m > 2) approximately the inextensional solutions.
#hen (20) is satisfied, all the quantities associated with these four
solutions are approximately static (i.e. independent of Q ) and 0(1)
except the direct stresses of the inextensional solutions, which are
ct the form

n = A7[92u7(n) + :211.,("] + Aaiazna(m v fa te)y,

8
Q)
’

wnere “7,8( n7'3(‘) are 0(1), indepenmnt of @ , and are fcund
by solving the motion equations as a non-homogeneous set of three
equations in wnich the gquantities multiplying 9 and €2 are known in
advance from the conditions of zero strain,

0f the eigbt soluticns, four are singular at ¢= ¢ and must be
giscardsd for a dome, We may take twe of these as the nembrane solution
nunbered 6 and the inextensional solution mmbered 8, and we see from

(i4) that the remaining two are the bending solutions numvered 3 and &,

Thus we must take

Tne zporoximate general solution can now be written

19

(20)

(21)
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v s HO'(Alc(a) + Aza(a)) + Asu(s) + A.,w(”

u s aTlg HeY (- sta®) ¢ A c@atd} ¢ A(3) 4 au(D)

v ® A2 HeY (A ala) - Ac(a)} + Av(3) s A"

by = AiseY (-A c(a®) - Ays(at)) + Ab )+ ap (7)

by = NheY {A c(a) + A s(a)} + Abg(3) o A, (7

m, " £2HeY {Als(a) - A } ¢ AS-“(S) + A.,-”(”

LI AviteY {A;3@a) - Acla)) + AS-“(” + A.,n“(”

™" AM(i-v) HeY {A,cat) + Ays(a®) ] o+ Asusﬁ“’) + 57'30(7)

(22)

9 " Ate? {a;s@a*) - Ac(a®)} + ASQ‘(“ * A?Qs”)

qg * AeY {-A,3(a) + Ajca)} + Asqe(b) + 57%(7)

ngg * A.‘lf(;nﬂe” {A;s(a®) - Aycla*)i + Asn”‘s) + A-,{an"(mf A"‘uss(‘ '}
ngy * GpHeY tajcla) + Axs(a)) Asn“(s’ + A7{02n°°(°) + A’“a“(“)

: ng * A'lnGnihY {A;s(a%) - Ajclat)} ¢ Asnse( 5, A-,(ansam)* l-“nseu ))

These approximazions are accurate when o? <0 (x'l). m > 2 and sin ¢ £0,

3 when 22 < O(A’z), all the quantities are approximately static (independent

W

of Q) except the direct stresses of the inextensional so’ution. These

formulas form the basis for our analysis of low frequencies and modes,
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3, CALCJLATION OF LOW FREQUEFSIES AMD MODES
In this Section we shall put the general solution (22) into various
sots of edge conditions and calculats the natural modes and frequencies.
The derivation will be carried out is detail for two cases but results
will be given for the rest, We shall begin with the case of a completely
free edge and then consider succesively "tighter" sets of edge conditions
until the fraguency is increased above the range, o2 f_O(A‘l) in which
(22) is applicanle.
We azsuma the edge is at o = 3y and sin ¢(c;) # 0. A new set of
cunstants, Bj' j=1, 2, 5, 7 is introduced, defined by
B, = Ak (0)e" %), & < A (o) deYi%)
By = Ay, B, = A,
and we also se*
—uy Ce) | ph =20 C6) o ou G)

A n ron” Z A

ss . ss
-4 () -4 =2 (g) 4 (1)
A Beg *A Ty N 2 A nse

Ia deducing the natural frequency and evaluating the constants it is to be
understood that all quantities are evaluated at ¢ = %5+

Case (I): Free EZdge. n 2Ngg=Q zu =0ato=g

ss Q

Tus four conditions are (keeping the leading verms omly)

Dy, * BlA°*fGn:(a*) - BzA'lanc(a*) * Bsn”(s)

+ n,{azn"‘g) + A”“nss(l)) 0 (23)
Mgy * BlA-lﬂcns(a*) - Blh-lncnc(a‘) + Bsn.’(S)

+ 87(025‘0(&) + A'“[nsau) + gmss( M)y =0 (2%)

] 3 3 {5) (s)
a =3B ) -~ B A R
2 K s(a®) cla*) + B [q + = 1}

+ B’I(qs(” * h‘e(”} = Q €25)

i¢
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2 - 2 (s) (2)
LI BIA s(a) BZA cla) ¢ Bs.” + 87-” =0
where
g* 112;»9'2(1 - vi)(3rg") - r,~h)
1f we sliminate Bl using the comdition (23), we obtain a three-square
syster tnat can be written in matrix fore,
=
Mo X (@X ¢+ A% ) B A-2 ‘
11 12 13 14 2
n X (X + A% ) B ‘ = (0]
21 22 23 2% 5 ‘
ey Al (@l e AT ) I B i
32 13 W o 7
where
x s (3) o Odwg;, X s-n. Y ), X =X s(a)
i2 1 ss 22 8 n 32 2z
=g (@) .5 @)y X = -n (s X -X__s(a)
x” ase n“ (M/8), 233 N, /(£Gg), 33 = 23‘ a
= 1) (7) _ (N
xlk n t P L (M/F)
; (@Y} () (7)
‘zu ¢ -(n” /£Ga} % * ’-se
X s -n (Tgan),
34 $s
Wnen B is eliminated, the leading terms in the coefficients of 52 cancel in
1
equations (24) and (25}, The dominant tcrms in these coefficismts then
arise from later teras in the asymptoti~ expinsions of n g, B,g and Qg for
the bending solutions, Thase are not xnowm sxplicitly, but we know their
orders of magnitude and designate the unknown functions n“and "21 + both
of which are 0(1),
The frequency is found by annulling the determinant of this systenm,
witn the result
X X _-X X +24¥n X -n ¥ W
ie 22 12 2% 21 12 11 22 3«
alpt = = a,?

X X X
12 22 13 22

11

{26)

(27)




The ratios of the coefficients ara found to be
5/ s a4/ (Tig(au)
17 bid
878 s 221/ % (F)gae) (28)
2 7
B/B 31"y
5 7 L]
where § 5 s 0(1) is & constant that may be determined from the systea,

The denominator in the frequency condition (27) is

X X <X X =n ¢y (@) g (5)p (@)
1223 1322 s 0 0 ss

and cannot vanish because the direct stresses associated with he membrane

and inextensionaj solutions must be linearly independent. Thus in ths range
o? < 0(A-1) tne frequency condition can be satisfied only whan

Q= oIA"z
Since A = ) x‘e‘”2 whenever 42 < G(371), we find that vhere is only one
natural frequency for each m > 2 in the range 2% < o(c!/?), and it is given
oy

2 = Glcrs(ca). (Ag)

We carnot deterwine a; and Isbecausc we do not inow n“ and n , which

21

are found from tne secoid teras in the asymptotic expansions of n and

ss*® nsa
Qe dence (29) is not of much practical value in calculating the frequency.
Hovever, a first approximation to the mode is coapletely determined by

the coefficients cbtained in (28), even though we dc not kncw §_ precisely.

vl vavle), u=al?lo) \
> 5,7, pg = dg‘7)e)
i (7)
™ l] - (¢)
rss = X sin { ¢ - (a/84)}) + ’.( )
lr" "J AL C))

12
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e ~ 23
L Tgg (o)

Gy " Alc) xain ¢
in (s ()
® -xM(o) sin {{ ~ (w/4)} (o)
q8 xN(o)} si 4 v/ * qQ o
Bey £(g)

* A~ 3(a)x Gn(o) 2in ¢
LI M(o)

Tee * A2(6) xGytad cos (¢ - (a/4)) J

/2

*®

2
X H(g) _ [ Ma) } on (72, )
H(ooT Kooy =0

272 £ (c.) 135 (yin oo )]/2  ola ("'3(09)
{r’awa {s!u 3(09" s

Z-I/Z(X - "G) z ’2-1/2A ,:o (re(a-)) »lIZ daa

it

4
Il is notewortny that all the quantities occurring in these formulas for tne
wode are static and relitively easy to svaluate. The displacements and
rotations are dominated ty the inextensional solution, the membrane solution
iz entirely negligible, and the bending (edge-affect) solutions have a streng
influence on tha stress-like Juantit.ies, making possible the satisfaction
of all boundary conditions,

Althougn this procegure has yielded oaly an order-of-magnitude estimate
for the frequency, it has delivered an sstimate of the mode that is both more
general and wore complete then any previcusly known,

Case (II): nsszus =Qs=D=0 at o = gy

Among the possible edge conditions this is the "freest" except for ths
free sdge of Case (I). The analysis strongly resamblss that of Case (1),

and we sball perely record the resuite, Only one frequency is found in

»(30)

(1)
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the range a4 ¢ 0(171) for saca m > 2, namly
-3/2 3/
ar GIIA / Clx(tre(oo)) /
ayy = 9(12 canrot be found axplicitly because of cancellation of the leacding

terms, as wds trus of age A complete first-approximation f-r the mode is

found,
ﬁ
w s wi?)g), u» ul7(g) v = v(7)(q)
pg = 5,700}
by = (cos ¢ ¢ bs(”(a)
13 1
=1 = -rtak sin {3 =~ (x/4)}
mOB ’ {(32)
By (1 = v)¥% (o) xcos ¢ ¢ m58(7)(o) >
qg = -A%(g)x sin ¢
qa = A (g)¥a)x sin {g - (x/8)}
o f
ss = =226, (a ¥ sin ¢
a M
Se
Mo " -A"(o)cn(c)x cus {¢ - (u/4)} J
wnare  is defined as in (31), and
x=He)  Me) rg!/*(ag)  sin'/24(0) (e
— - £ gy des = ¥ 7 3t ey )e”
Hlog)  Algy) re‘ “(a) sinl” 2¢(g)

The frequency is somewhat nigher than in Case (I), The modal displacements
are wiclly inextensional, and the stress-like quantities are almost entirely
derived from the bending sclutions.

We see that Cases (1) and {II) are quite similar. In neither case can
we calcul:-ce the frequency directly, but in both cases we have very good

snowled ge of the mode, However, if we use Rayleigh's Principle, we can

14
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transiate accurate informa'ion about the mpode into accurate information
about tde frequency. This is axactly what Rayisigh did for spherical domes
and cylinders, and we shzll derive ger~ral formulas for domes with the edge
conditions of thess two cases in Section 4,

Case (III): ngg * K, = uz ™. =0 at 0 3 gy

This is the "freest™ of the remaining boundary conditions. The analysis
procecds as in Case (I) except that (25) is repiaced by

W= Bela) + st(’a) 4 Bsn(b’ + B.,u( 7 2 g,

After eliminating B, the matrix eguation of the system iz

2 - -2
n,, X,, (a2x,, + A7%%,,) A%,
T2 px,, (220 X, ¢ Xzo ) B, = [0}
-1/2 ATIXg,  (REATRX,, e ATUXG) [ By
where
n. (52c(a) gy (Pc(a)
ss s =, (7 at)
Xgg * = Xp3* - o X, Tw sl
£G, £G
n ) n
nss(’, s{a) n”(ms(a)
X32 * ’ X33 =
fG £G
n n

and th: remaining X's are defined as in Case (I). We find for the freguency

xlleb

X (X4 - xu) *x x,, - Xy)

a‘p = = o’

and after scae reduction

(s {s)
9 L’hss

(), (%)
T

fn
GIIII E 2’1/2 '(7)Gn[ 3
Ln“ (33)

1$
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Qs uuxlf‘/z = cxnftre(co)}”“

The frequency is now higher by a factor of roughly ¢~1Z than in Case (II).

The mode is -
weul?)y) - XCOo8 ¢ usul?l) vz v(")(o)
b, * Alo)y cos{g + (2/%)} by = b6(7)(o) - Mycos
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This mode differs from those in the two prece-iing cases in two important
ways. Tirst, the displacenents are no longer coapistely inextensional, for
the bending solutions make a contribution toc w near the edge, Second the
effect of the membrane solution is not now camplately negligible but is

felt in the formulas for the direct strescwg,
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Cas3 (£V): s, = Ng=wz2D=0 atosay
The analvsis is the same in this case as in Case (IIl) with an obvicus
charge in thas iast boundary condition. The natural frequency is found to
ke
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This frequency and mode are gutlitatively much like those in Case (III).
ve see from {35) and (33) that the frequency estimate in the pres:nt case is

largar thau in Case (III) by a simple factor 2}/2,
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The edge conditions censidered in Cases (I) - (IV) all rave n = Ny=0
at J = 0., ie the edges of the shell have been free to move in directiens
tangent to the middle surface. We have now exhausted all the cases with this
property. If we work out similar analyses for

Ca~~ (V): ng = v=Q =Nss=0 at o = g,

s
Case (VI):u = Nse = QS =m = 0 at CEE P
we see tnat natural frequencies in the range 2° 20 (A"1) cannot occur, ie, for
these edge conditions ail the natural fregquencies obey
Q% > 2(1),
But all tne remaining edge conditions are obtained from (V) or (VI) by "tighteniny"
some of tne conditions, ilence in all the remaining cases the natural frequencies
are at leas-~ as high as in Cases (V) or (VI), We conclude that only for Cases
(I) - (V) can 4e find natural frequencies in the range
a2 < s(el/2),
Mo4 it is easy to see from the motion equations that inextensdional solutions,
je solutions navinz the property that
Rsss Ngge Mggl 2G71)
and all other quantities are 2(1),cannot occur when Q¢ 2 0(1). Hence ‘or a dome
inextensicnal modes and frequencies can occur only in Cases (I) - (1Y), ip, only

wnen tne edge is free tu mcve tangentially.
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= 4 APPLICATIONS OF RAYLEIGH'S PRINCIPLE
- In this Section we shall see how estimates cf the inextensional freguencies
- can be ottained for the Cases (I} and (II) by using Raleigh's Principle.
Rayleigh's Principle states that for any field of displacemerts satisfying
the edge conditions on displacements,

2 < a?={E  + L)/ K (37)
where E_, E; and K are to be calculated from the given field of displacements by
means of (13)., The accuracy of the estimated rrequency, o, depends on {and is
usually much petter than) the accuracy of the assumed displacement field, de
must emphasize (because it is occasionally overlooked) thne effect of the edse
conditions on the displacements. If these edge conditions are not satisfiedq
by the chosen displacement field, QE may differ wildly from @ and need not aven
be the larger of the two,

In applying Rayleigh's Principle %o Cases (I) and (II) we shall take as
the trial displacements the approximate modes given for these Cases by our pre-

vious arelysis. From (13), (4) and (5) we have

t
)

a - vz)'zfco {n__2 +n.%2 - 2vwn__n,. + 2(1 +vin_,?) r_sineds (38)
s~ ozg SS 60 ss  96 s@ 8"
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]

= 2781 -v2)! %8 2 2 _ 2 i 9
3 A1 -v) !ago(mss +t mge vassmse + 2(1 + vhnso }resxn.da (39)

%% (W e v e wd)r sinedo (22}
c=0 e

Referring to the formulas (30) and (32) for the modes in the twvo cases, we see

x
n

FARYE e vAmYe 1

that two kinds of terss occur, pamely terms of inextensional and edge-effect types.

The integrals of the inextensional terms are of the same order as the terms them-

selves and cannct be evaluated explicitly untii the shell shape is specified.

The integrals of the edge effect terms are smaller by an order cf maanitude

R e T R R
' A

thar the terms themselves and can be evaluated explicitly (though approximately)

)
A
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by use of the Laplace Method for asymptotic approximation of definite integrals.
For example in Case (II}, (33) and (32) lead to
Eg= (1 - vi)? f:°neezz‘esinedc
= (1= v2)72 128 (472 (o )2 (c) rylo)sing(o)Gy2(0)] cos? [g ~ (/)]0
= 199 472(0)r, " (o) sin ¢lo)a (a)(D7 (0212} x
x e/t cos?lg - (n/4)] &
wilere
2 = i3 A0 )/ [hloy IA(ag ) )

Tue functice e‘> nas the value unity !or ¢ = g.and decreases ra, ..., °> 2erc as

0

o decrea:e from 3, sience this inteegral is of Laplace type, ir .ni; *te rejion
near o= 5, contridbutes apprecidaily t. the intesral. We may tne:e° re appoxinate

it oy

E = {A'2r3-13(7)25in¢} tl/?)fgo e28(1 + sin 2g) 4o
3
]

Tne intecra. in tais expression can ne evaiuvated approximately ~c- -ne ald o€ (31)
- -ive

== (a73p Tin(7)2g;; 172 483

Z, {(+7r 710 :.m:'uo (2172/8)
se mnow taat 22 = (A7), aence

"(z0) = ar "V 2(g,),

0 Als 99

“nus, *Inaliy we find
L= (178).73iryl0,)31/2(2(7)(50)12 sinelop)
>

in a sinilar manner Ly may de estimated,
I ( .
£y = (378047 3(2r (0g))1/200 7)(93)12 sing (o}

Hence for . ase (1)

-3

= 37 (30723200 (5 0) B sin (o)

2
QE K(7) (u1)
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Applying the sase analysis in Case (I) we find
- -5
E = 0(17°%)
. ¢ () -5
EB Ea + 0 (A7)

(7) _ ;-0 {7)42 (7232 . (). (9)
EB =7 3: {[mss 1% e [“oe ] 2w Tmag

+2(1 + v)imse(7)j2i rq sine do

k= k'7)
Hence we obtain the estimate

a2 = EB‘”/K(-” = 0(A”") (42)
de see that in this case the estimate given by Rayleigh's Principle can be
derived solely from the irextensional displacements. This is not true of the
estimate just abtained in Case (II), nor is it true of the Rayleigh estimates
that are obtained for the inextensional fregquencies in Cases (III) and (1V),
Equation (42) is of course just the astimate thae Rayleizh used to find the
inextensional freguericies for a spherical dome. However, neither Rayleigh nor
any subsequent investigator seems to have been sure of the conditions under which
the estimate is accurate, ¥We now see that it is accurate only when the edse of

the dome is free.
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5. INDXTENSIONAL PREQUENCIES FOR A SPHERICAS BOME

In tais Section we carry out the calculation of the two lcwest inextensional

frequencies for spnerical daome under the 2dge conditions of Cases (1l) and (II1),

using formulas (41) and (33), respectrivelv.

for a spherica! done the inextensional solution that is finite at ¢ = 0 has

u(?) = v(7) z sin Qtanm (’/2;. m :2
w(7) z -(m + cose) tan™ (¢/2)
ot7) - {sing - mm + cosy) csco)tanm {3/2)

and tne xinetic energzy is ziven by

k()
5

“5leizn has shown no< this integral can be evaluated for inteser values of =,

In Case (II) Equation {41) reduces to

352 = 2"/253/25inoo tan’® (9472)( sirgy, -n (m + coseg,)esc o

d.'((‘c ."‘)

0y

i'igare I saous jrapns of the relat.ons between at and ¢, form = 2 and 3, ob-

taineac Trem (uk),

-

in Case (ITI) the freguency is given by (33).

spnere, we cbserve first that the membrane solution finite at 4

x2:5 [2])
nSe(S) :-nss(S)'

and (33) reduces to

ia

{ass(m \ nsa(m};%

To find

(q)

22

L
2 Koy, n) =" 0 tan?® (2} 2sinZg + (n + cosg)?)sing de .

To evaluate thiec for a

0 Las (see

arrg? = 2271201 o ¥)a e s0seg)? esce, ran™ (¢./2)

{63)
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we Lust solve the system of equations obtained from the motisr squations by
setting € = 0 and taking for u, v and w the inextensional dispiacements (u43),
The governing equation is

dz

— +(m+2cos¢) cscoz z=(1-vi)u+v-wulne+ coselcscal

de
and a particular solution (which is all we need) is

z(9g) = -(1 - v3)X (¢5m) sin'zo9 tan ™ (00/2)
embining this with (45) and (33) we find

22 = ¢V m + coses? singy tan?® ¢,

-~
&
o

~

21/ 2K( ¢ 4m)
The frequencies predicted by (46) when m = 2 and 3 are shown in Tinure 2,

The inextensional frequencies in Case (IV) are 21/ 2¢imes those of Case (II.J.
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6. DISCL SSION

The results derived in the preceding Sections aid our understandine of
inextensional modes and the roles they play in shell vihration problems. In

briei, wo may say that, when inextensional modes can occur, they are 23saciated

with frequencises lower than those associated with any other type of mode, At

most one inextensional frequency is found for each m 22, bdur for a Ame none

can occur if the edre condirions involve significant constrai-t anainst mesisn

tanzsnt to tne shell surface, The inextensional frequencies are far =nore

sensitive to tne edge conditions than are the {higher) memnbrane and bending
¢requencies,

de have seen that the procedure used by Rayleigh to find inextensionral ‘re-

quencies yields very nearly the results odtained by the present metrh:2 for 2

‘ree edre, Casz (Ij. For Cases (II) - (I/) the present methol predicts noudes

R
-~

sredominantly inextensional displacements, which cannot he found hv “aylei-n's

procedure. The freguencies in thess Cases are hipgher than in “ase {7) hut

5 e

Pl

*

"o

. %
P 3
13 23773red to the lowest freguencies ostained for all the v siinir- ad-s

corditicns,

An interesting aspect of tnis analysis is this. when ¥ < 3(372), the
cnl, juantities amcng all the eight solutions that depend on
siresses associated witn the inextensional soluticns, When the-e s~lut
are inserted in the bcundary conditions and 2 natural frequency Is calculated,

ciear that tne inextensional direct stresses are the indisg

ients >f the caiculation. For, if

fad

ey are absent from the frejiency eguation,
it £~e3 not contain tne frequency and cannct be satisfied, and no natural

frejiencies will De found. Yet, despite the importance of tnhese direct stresses,
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they can be cospieétely neglected in applying Rayleigh's Principle to find che
insxtensivnal frequencies for a free-edged dome,

We have not considered boundary conditions of elastic constraint at the
edze. In general we may expect that these will rroduce frequencies lying betweoen
tnose associated with the two "pure™ edge conditions that are combined to give
the elastic condition. For ezample, the lowast natural frequency associated
with the boundary condition

n =Nse=w =€mss*(l-£)0=0,

ss
wnere 0 < £ < 1, should satisfy
~1/2 ~1/2
Although we have chosen to demonstrate this procedure for domes, it ought

to work equally well for shells with two edgec. However, it remains aiways

subject to the condition ther mig << 1,

2%
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for tne Ldpe Conaition N * Nss z Qs =Wz,
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